Proceedings of the IASTED International Conference
Intelligent Systems and Control 2000
August 1416, 2000 - Honolulu, Hawaii, USA

A Locally-connected Neural Network for Fingerprint Recognition

Tyson J. Thomas
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109
tyson @brain.jpl.nasa.gov

Abstract

Fingerprint recognition is typically done by matching
graphs or templates of extracted minutia from whole
fingerprint images. In our approach, the local, global, and
relational characteristics of an input pattern, which could
be an entire fingerprint image or some sub-slice, are
captured in the feature vector produced by a locally-
connected neural network. This feature vector is also
invariant to translations and rotations of the input pattern,
transformations that are common in the registration of
fingerprints. In addition, the processing elements of the
neural network are particularly well suited for analog
hardware implementation. This combined with the
capability of using a set of consecutive fingerprint slices
for recognition instead of a single large image could
enable much cheaper and lower power verification
systems.

network, pattern recognition,

Keywords: neural

fingerprint
1. Intreduction

Pattern recognition systems typically consist of two
stages: extraction of feature vectors[1] and classification.
In the first stage, an input pattern/image comes into the
system and gets reduced to a set of feature vectors
through various operations (e.g. transforms, moment
calculations, etc.)[2]. In the second stage, the set of
feature vectors associated with the input pattern gets put
into a classifier[3] that associates the feature vectors with
the appropriate output class and hence the pattern is
recognized.

Fingerprint recognition typically involves the
extraction of minutia features from a whole fingerprint
image, then the subsequent classification of a graph of
these minutia through comparison with stored graph
templates[4,5,6]. Minutia are defined as the distinguishing
-physical characteristics of a fingerprint such as ridge
terminations and bifurcations. Both the locations and
types of minutia are important to formulating a feature
graph, which typically is made up of around twenty
minutia points.

This work describes a novel way to extract a very
useful feature vector using a locally—connected neural
network, which by itself may be enough to achieve
pattern recognition in certain applications if combined
with a simple classifier. The technique is applied to
classifying portions of fingerprint images obtained from
NIST Special Database 4[7].

2. Locally-connected Neural Network[8]

Generally, the locally—connected neural network
(LCNN) performs a mapping from pattern space to a
lower dimensional representation space in which
translational and rotational transformations in pattern
space get mapped to the same place in representation
space. At the same time the feature vector that results
from this mapping captures local, global, and relational
characteristics[9] of the input pattern, specifically as a
function of the relative pixel densities. Once in
representation space, a standard classification technique
can be used to perform the final recognition of the feature
vector.

While the locally-connected neural network
algorithm can be implemented in a variety of ways, it was
specifically designed to be implemented using fully
parallel analog complementary metal-oxide silicon
(CMOS) circuitry. Hardware implementation substantially
increases processing speed while reducing power by
several orders of magnitude. Analog integrated circuits
for the LCNN could be combined with active pixel
sensors to produce invariant pattern recognition on a
single chip. For the application of fingerprint recognition
explored here, however, the LCNN algorithm has been
implemented with software.

2.1 Input

In hardware, the input pattern presented to the
network can be stored digitally at each pixel location or
can be provided directly by a sensing pixel element such
as a phototransistor or other transducer. More generally,
the input pattern forms the feeding inputs to the
neuromorphs' spatially co—located with the input pixels.

' The basic functional unit of the network is called a neuromorph to distinguish it from generic artificial neurons or

perceptrons found in the literature.
317-105

-1-

2.2 Processing

The neuromorphs use the input pattern pixels as
feeding inputs while local neighborhood connections
provide linking inputs, similar to the biomorphic spiking
neurons of [10] which were inspired by the Eckhorn et
al. model of the cat visual cortex neurons[11]. The entire
network of neuromorphs competes for a fixed resource
called energy that gets distributed over time across the
network as a function of the relative spatial locations of
feeding and linking inputs. Each neuromorph adds its
feeding and linking inputs, then uses the ratio of this total
to the sum of totals for all neuromorphs in the network to
determine its share of the fixed energy, which becomes its
new activation level. This process repeats until each
neuromorph’s activation level settles on a fixed value.

Feeding Input

Fig. 1: Neuromorph (center square) shown with local neighborhood
linking connections and pixel feeding input.

The activation of a neuromorph at any particular
spatial location is thus a function of both the local feeding
input from the corresponding input pattern pixel and the
linking input formed from the activations at its local
neighbors, as shown in Fig. 1. Even locations without any
feeding input, i.e. inactive pixels, still receive influence
from their neighbors and obtain a non-zero activation
value. Fixing the amount of energy in the network
prevents an activation explosion that could occur from the
positive feedback in the linking connections. By limiting
the activation resource (energy), shunting inhibition is
introduced between all competing neuromorphs, similar
to the kind of inhibition used in the eye of the Limulus
crabf12].

Since the network is recurrent and therefore
represented by a dynamic equation, its activation needs to
be computed iteratively in computer simulations. The
update for a single neuromorph goes as follows:

1. Calculate the weighted sum of the local neighborhood
where the weights represent the synaptic connection or
linking strengths —most likely all the same in order to
achieve rotation and translation invariance through
symmetry and uniformity.

2. Add the feeding input pixel value from the original
input pattern to the linking input weighted sum from
Step 1 to form the local sum..

3. When Steps | and 2 have been completed for the
entire network, go back and divide the local sum by
the sum of all local sums and multiply by the energy
to get the new local activation level. '

What happens then is that local sums are calculated
for each neuromorph over the entire network and then the
fraction of these sums over the total of all sums in the
network is used to determine the local share of the total
fixed energy. Each neuromorph therefore gets a
percentage of the total energy based on what fraction its
local sum was of the network total of all local sums.
Mathematically, the network activation is iteratively
computed by:

Iij+ 2, [W'q‘;uau(n)]

o;(n+]) = er) -E
Z[’ﬁ s [wwaum)])
i kleNy, (i)
where,

kle N(ij) are the coordinates kI of a point that falls within
a radius r of the neighborhood of neuromorph ij;

ow(n) is the current activation level of neuromorph &/ in
NAGj);

w;. is the weight of the synaptic or linking connection
between neuromorph ij and neuromorph &/;

I; is the input pattern pixel value at location ij;

E is the global network energy constant;

n is the iteration number.

2.3 Feature Vector Extraction

When the network has settled, each neuromorph has
an activation level that remains fixed. A feature vector is
extracted from the network by calculating an activation
histogram which totals the number of neuromorphs in
each of a set of different activation range bins. The
number of bins in the histogram is a parameter that may
be adjusted depending on the application and directly
determines the dimensionality of the system’s output
feature vector. Generally if there are too many bins then
the histogram is sensitive to slight variations in the input
pattern which may be caused by edge or finite resolution
effects while if there are too few bins the histogram is
unable to differentiate as well between input patterns. In
addition, minimum and maximum activation levels are
also histogram parameters that can be determined ad hoc
for the pattern type. For example, small patterns with
large uniform backgrounds (e.g. written characters) will
have many neuromorphs in low activation bins of the
histogram that do not represent much useful information
about the pattern. In this case, one might consider forming
the feature vector only using bins that contain activations
above a certain threshold. Conversely, for more uniform
patterns (e.g. fingerprints) that have a more Gaussian
looking histogram distribution, one might want to keep
the full range of activations.

Every neuromorph’s activation level thus falls into a
bin (or alternatively a set of bins in order to make the
histogram smoother and more continuous). The feature

-2

vector is formed with the same dimension as the number
of bins in the histogram, and the values in each dimension
are equal to the number of neuromorphs that fall into the
particular activation level’s bin. To complete a
classification system, a variety of techniques (nearest
neighbor, neural network, etc.) may be used to perform
the final classification of the above generated feature
vector to complete the recognition of the input pattern.

While the process of creating a histogram from the
network activations effectively destroys the specific
spatial information in the original pattern, this is what
produces invariance to translation and rotation (assuming
symmetric weights; see Section 2.4.2). The LCNN
preserves information related to the relative relationships
within the pattern because local activation is a function of
the relative spatial relationship between pattern pixels and
their intensities.

2.4 LCNN Parameters

2.4.1 Local Neighborhood Connectivity

It does not make sense to implement a large
neighborhood radius in hardware because the wiring
overhead becomes substantial, reducing the number of
neuromorphs that can be implemented in a single network
on a chip. In software, however, it is quite trivial to
expand the local neighborhood radius to any size desired,
but this increases the number of calculations required per
network update. The utility of higher—order neighborhood
connections seems dubious for the technique described
herein, so typically only first level or radius one
neighborhood connections are made. Fig. 1 above showed
first level neighborhood connections where the center
neuromorph has linking connections to its eight nearest
neighbors. Second level neighborhood connections would
require an additional sixteen links to surrounding
neuromorphs at radius two.

2.4.2 Weights

The weights or linking strengths constitute an
additional network parameter whose influence has not yet
been addressed. While the network may exhibit
interesting effects as a result of non—symmetric weights,
for the system described here all linking weights are equal
in order to maintain the symmetry required for rotational
and translational invariance. The magnitude of the linking
weight, however, does change the behavior of the network
without destroying the latter mentioned invariances. In
practice, a larger weight multiple tends to accentuate
regions of higher pattern density while blurring the
network energy distribution away from the original input
pattern shape. In the limit of very large weights, the input
pattern is lost and the feature vector generated by the
network loses its utility. Lower weights tend to preserve
the structure of the original input pattern, but decrease the
amount of communication between pattern regions
creating a feature vector that is less representative of the
relative spatial relationships between input pattern pixels.
In the limit of very small weights, the feature vector
generated by the network is a simple input pattemn
intensity histogram without any information about the

relative spatial relationships of pattern regions.
3. Application: Fingerprint Recognition

The locally—connected neural network algorithm has
been applied to portions of fingerprint images from the
NIST Special Database 4[7] in order to generate feature
vectors. These have subsequently been classified using
two simple classification techniques: Euclidean Minimum
Distance (EMD) and k—Nearest Neighbor (k-NN). In
addition, a slightly modified version of k~NN is used to
evaluate the performance of a system intended for
verification, where the correct class is known a priori.

3.1 Database

The database from NIST consists of 8—bit grayscale
512 by 512 raster images of two inked impressions or
"rollings" of each of 2000 different fingers. These images
were produced by scanning fingerprint cards with a CCD
camera. Fig. 2 shows some examples of images taken
from the database.

Fig. 2: Examples taken from NIST Special Database 4 showing the
variety of quality and intensity in the images of ink—-rolled fingerprint
cards. The original images included 32 rows of white space at the
bortom; these images have been shifted to the center which has produced

" ablack bar on the 10p (the remaining white portion on the bottom is not

visible).

Due to the background inconsistency (many images
show labels or handwriting) and the variation in
fingerprint sizes, 256 by 256 sub—images as shown in Fig.
3 were used for input to the LCNN. Using a smaller
window has the added advantage of substantially
decreasing computation time (it takes about 13 seconds to
process a single sub-image on an AMD 500MHz Athlon),
and forcing the classifications to be performed based on
fingerprint data rather than background clutter. In
addition, this validates a classification scheme based on

-3

portions or slices of fingerprint data as might be gathered
by a scanning strip imager. By identifying a sequence of
slices of a fingerprint image instead of a single full
image, a smaller and cheaper imager could be used while
enhancing security through the compounding of the false
acceptance probability. For example, if the false
acceptance rate (FAR) of a fingerprint slice is 10%, then
the probability of falsely accepting the first fingerprint
slice in a sequence is 10%, but the probability of falsely
accepting two fingerprint slices would be only 1% (and
three would be 0.1%).

Fig. 3: A 256 by 256 sub—image of the original 512 by 512 fingerprint
image. By taking the sub—image in the center, handwriting and other
clutter in the background are avoided and computation time is reduced.

It ‘would be natural to use the first—rollings for
training and the second-rollings for testing in the
evaluation of a classification system for these data. The
consistency, however, between the separate rollings is
very poor and is probably much worse quality than one
would expect from a modern (non—ink based) imager.
Consequently, training and testing images were taken
only from the first-rolled images by sampling from the
middle with a normal probability of being displaced from
the center both horizontally and vertically. The standard
deviation of the displacement distribution was set to 10
pixels, so that 95% of the samples could be expected to
lie within +20 from the center. This represents just under
8% relative movement in either direction, however it
translates into 15% new area which brings with it new
image structure since the sample is in the middle of the
larger fingerprint image.

An analysis of 2000 central sub—images taken from
the set of 2000 first—rollings shows an average image
intensity of 102 (out of 255) with a standard deviation of
26. The minimum average intensity is 21 and the
maximum is 197. This wide variance is apparent in Fig. 2
above and is also inconsistent with a modern non—inked
based imager. In an effort to control this wide degree of
intensity variation, which actually helps in classification
by moving classes further apart, a linear stretching was
applied to a set of the sub—images. This procedure
rescaled image intensity to span the full grayscale range.
Fig. 4 shows the results of this operation.

Fig. 4: The original sub—image is shown on the left and the linearly
scaled version is on the right.

Gaussian noise with a standard deviation of 10
(3.9% on grayscale) was also added to each pixel of each
sample to emulate sensor noise and further increase the
differences between samples of the same fingerprint. Fifty
samples were taken from each fingerprint used in
classification to insure adequate coverage of the within—
class variation.

3.2LCNN Processing Parameters

The feature vectors generated by the LCNN from the
fingerprint sub—images were obtained from empirically
determined histogram parameters. Using a total energy of
100,000, a linking weight of 1, and a convergence
threshold of .01 (the convergence threshold sets the point
at which the network activation is considered to be
settled), a histogram range of 0 to 5 with twenty—one bins
was picked by analyzing the network activation statistics.
This means that the feature vectors generated by the
LCNN are twenty—one dimensional. For a baseline
comparison of classifying effectiveness, a standard
intensity histogram was also calculated and using the
same number of bins as for the LCNN, twenty-one
dimensional intensity feature vectors were generated.

4. Results
4.1 Euclidean Minimum Distance Classifier

The EMD classifier is very straightforward. A class
mean is calculated from the training data for each
fingerprint used. Test data then gets assigned to the class
label of the class mean that has the smallest Euclidean
distance to it. We calculated class means for 402
fingerprints using forty-nine random samples for each.
The fiftieth samples were used to generate test vectors
for evaluation. The number of missclassifications was
calculated for the test set to generate a classification rate
for a single run. Since the test vector is picked randomly
from amongst the fifty samples, twenty runs were
processed to get a reliable estimate for the mean
classification rate for EMD processing LCNN feature
vectors. We obtained a rather poor classification rate of
48.64+3.5% (the error range given is two standard
deviations, or a 95% confidence interval). Using intensity
feature vectors we obtained 39.4+4.4%. This would seem
to indicate that the class means are not very good at
representing the fingerprint classes, which seems

-4~

reasonable given that different sub—image samples
contain different image structure around the edges as they
are displaced about the center. While the LCNN
produces translation invariant feature vectors, it produces
different feature vectors when there is new structural
image information present.

4.2 Nearest Neighbor Classifier

For the nearest neighbor classifier (1-NN), each
training sample is considered a prototype for its class. A
test vector is thus classified by the class prototype that has
the minimum Euclidean distance to it. Forty-nine random
samples were used to form class prototype sets for each of
402 fingerprint images, and the fiftieth sample was used
as a test vector. Again, twenty runs were performed since
the test vector is drawn randomly from the set of fifty
with the remaining samples used as prototypes. The mean
correct classification rate for LCNN feature vectors is
84.613.3%, while simple intensity vectors obtained

69.413.1%.

Another data set of 408 fingerprints, this time
without the Gaussian noise added to each pixel, was
similarly processed over twenty runs and obtained the
excellent mean correct classification rate of 99.3£1.0%.
Amazingly, the simple intenmsity vectors achieved
98.611.1%! This indicates a few things about the data set.
First, despite the linear stretching applied to all the
images, they are still widely varied enough to allow very
good classification using simple intensity histograms.
Second, the random Gaussian noise applied to pixels more
strongly destroys the effectiveness of the intensity
vectors, while the LCNN vectors maintain a higher level
of performance since they are based on relative image
structure as well as intensity. In the limit where intensity
is binarized, the LCNN will still produce rich feature
vectors, while the intensity vectors will be reduced to two
dimensions losing almost all valuable information,

For comparison, {3] uses the Karhunen—Loeve (K-
L) transform of the ridge directions for the input feature
set. They first run the images through an FFT—based filter
to increase the SNR in order to make the ridges more
detectable. Then the local orientations of the ridges are
measured at 840 equally—spaced locations. These are used
as input to a translational registration module that
attempts to standardize the location of the image core.
Finally, the K-L transform of the modified ridge
directions is taken as the feature set. Using EMD with 32
features, they obtain 73.4%, and with 1-NN they get
90.4%. These figures are not exactly comparable to those
presented here for two reasons. First, while they use the
same NIST Special Database 4, they perform the more
difficult task of training on the first~rolled image and
classifying on the second-rolled image. Second, they
calculate their classification score considering that
naturally occurring fingerprints have a very unequal
distribution into broad class categories of Arch, Tented
Arch, Left Loop, Right Loop, and Whorl, while the
database has equal numbers of prints from each of these

categories. One comparison, however, is fairly clear: the
feature vector generated by the LCNN is much easier to
calculate. This is one advantage that could enable low
cost recognition in application specific hardware.

4.3 k—~Nearest Neighbor Verifier

The k-NN technique uses k of the nearest prototypes
to a test vector to form a committee, the majority of
which determines class label. This gets rid of the winner—
take—all of the 1-NN approach, and allows for a test
vector to be classified according to the largest number of
class prototypes it is near.

If we know a priori what class a particular test
vector is supposed to be in and we are testing to see
whether it is (the verification problem), then we can
combine 1-NN and k-NN together to improve
verification performance. In this scheme, if the test vector
is closest to the correct class, then it is given that class
assignment just like using 1-NN. If the nearest prototype
is in a different class, however, we then turn to k~-NN and
determine whether the majority of k nearest prototypes
are in the correct class. If so, then the print is correctly
verified, otherwise a false rejection is given. Using the
original data set with the Gaussian pixel noise back in the
picture, and using k=49, we are able to obtain a
verification rate of 88.1+2.3% using twenty runs. For
simple intensity vectors the verification rate is
76.242.9%.

While fingerprint verification is an easier problem
than recognition, it is also of more relevance to security
applications and the consumer electronics market. Law
enforcement is interested in quickly recognizing an
individual’s fingerprint from a large crime database so
fingerprint data can be usable in the field. Security
applications, on the other hand, are mainly concerned
with verification of an individual for authorization
purposes. In this scenario, the person has already
represented whom they are supposed to be, and the
fingerprint biometric is used to confirm this claim. The
LCNN approach is more suitable to security verification
applications since cost and limited computational
resources are more likely to be the driving factors in these
systems.

-5~

4.4 Classification Summary
EMD I1-NN k-NN
verifier
402 prints 48.6% 84.6% 88.1%
LCNN
+3.5% +3.3% +2.3%
402 prints 39.4% 69.4% 76.2%
Intensi '
hisz‘;?m +4.4% +3.1% £2.9%
408 w/o 99.3%
noise.
408 w/o 98.6%
noise.
Intensity t1.1%
histogram

5. Conclusions

The locally—connected neural network has been
shown to produce useful feature vectors for the
classification of fingerprints. On the particular database
tested, simple intensity histograms also performed quite
well as feature vectors for classification. It would be
worthwhile to evaluate the LCNN feature vectors on data
for which the simple intensity features do not perform as
well in order to further validate the LCNN technique.
Fingerprint data from a modemn electronic or optical
sensor could possibly provide such a data set. It would
also be beneficial to process a larger number of
fingerprints in order to insure that the representation space
does not get overly crowded as additional classes are
added. If the LCNN is intended to be used in a
verification system, this would provide a valuable
estimate of the expected false acceptance rate.

Since the LCNN was applied to fingerprint sub-
images, there is further evidence that the technique could
work well in a system that identifies a sequence of
fingerprint image slices as opposed to a single large
fingerprint image the way standard systems do. This
would enable the use of smaller imagers while possibly
enhancing security and decreasing the false rejection rate
since the standard for any particular slice’s acceptance
rate could be relaxed.

The main advantage of the LCNN approach is the
simplicity of the architecture and the ease of
implementation with hardware. This could open up
application domains that have heretofore been cost—
prohibitive.

Acknowledgements

The research described herein was performed by the
Center for Space Microelectronics Technology, Jet
Propulsion Laboratory, California Institute of Technology
and was sponsored in part by the Ballistic Missile Defense
Organization/Innovative Science and Technology Office
(BMDO/IST). Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute
or imply its endorsement by the United States
Government or the Jet Propulsion Laboratory, California
Institute of Technology.

The author would like to thank Dr. Tuan Duong, Dr.
Chris Jones, Ken Hayworth, Randi Thomas, and David
Weldon for useful discussions.

References

[1]1 P. A. Devijver and J. Kittler, Pattern Recognition: A
Statistical Approach (London; Prentice—Hall, 1982)

[2] J. Wood, Invariant Pattern Recognition: A Review,
Pattern Recognition, 29(1), 1996, 1-17.

[3] J. L. Blue, G. T. Candela, P. J. Grother, R. Chellappa,
and C. L. Wilson, Evaluation of Pattern Classifiers for
Fingerprint and OCR Applications, Pattern Recognition,
27(4), 1994, 485-501.

[4] M. K. Sparrow and P. J. Sparrow, A topological
approach to the matching of single fingerprints:
development of algorithms for use on rolled impressions,
Technical Report Special Publication sw—124
(Washington, D.C., National Bureau of Standards, 1985)
[51P. K. Isenor and S. A. Zapy, Fingerprint Identification
Using Graph Matching, Pattern Recognition, 19, 1986,
113-122.

[6] A. K. Hrechak and J. A. McHugh, Automated
Fingerprint Identification Using Structured Matching,
Pattern Recognition, 23, 1990, 893-904.

[71 C. 1. Watson and C. L. Wilson, NIST Special
Database 4 Fingerprint Database (National Institute of
Standards and Technology, Advanced Systems Division,
Image Recognition Group; March 1992)

{8] T. J. Thomas, Locally—connected Neural Network
Architecture for Invariant Pattern Recognition, NASA
Tech Briefs, NPO-20633, to be published, 2000.

[9]1 R. Jain, R. Kasturi, and B. G. Schunk, Machine Vision
(MacGraw-Hill, Inc., 1995)

[10] A. S. Baek and N. H. Farhat, Biomorphic Networks:
Approach to Invariant Feature Extraction and
Segmentation for ATR, Proceedings—SPIE The
International Society for Optical Engineering , 3462 (3rd
Conference), 1998, 228-241.

[11] R. Eckhorn, H. J. Reitboeck, M. Amdt, and P. Dicke,
Feature Linking via Synchronization among Distributed
Assemblies: Simulations of Results from Cat Visual
Cortex, Neural Computation, 2, 1990, 293-307.

{12] H. K. Hartline and F. Ratliff, Inhibitory Interaction
of Receptor Units in the Eye of Limulus, Journal of
General Physiology, 40, 1957, 357-376.

